MOTOR NEURON-SPECIFIC RESTORATION OF SMN IN TWO SMA MOUSE MODELS: INSIGHTS INTO THE ROLE OF MOTOR NEURONS IN SPINAL MUSCULAR ATROPHY A Dissertation by

نویسندگان

  • XIMENA PAEZ
  • Farida Sohrabji
  • Rajesh Miranda
  • Mark Harlow
  • William Griffith
  • Ximena Paez
چکیده

Spinal muscular atrophy (SMA) results from α-motor neuron loss in the spinal cord due to low levels of the survival of motor neuron (SMN) protein, required for proper spliceosome assembly. The reduced levels of SMN cause muscle atrophy and ultimately death in the most severe cases. Although mouse models of SMA recapitulate many features of the human disease, it is still unclear whether their phenotypes are primarily due to motor neuron deficits. If so, motor neuron-selective restoration of normal SMN levels should have a great positive impact on SMA mice. To test this, we first exogenously raised normal human SMN in severe SMA mice that die perinatally, by driving its expression selectively in motor neurons with an Hb9 promoter. We found no extension of survival. We detected motor neuronal-SMN protein expression in Hb9-SMN transgenic mice from mid embryogenesis to postnatal day 6. However, mRNA for transgenic SMN was undetected by late embryogenesis. These results suggest that expression of Hb9-SMN declines before SMN levels are most needed perinatally. Second, we increased endogenous motor neuronal-SMN expression following embryonic Hb9-dependent Cre recombination of a conditional hybrid mutant allele (Smn res) in another severe SMA mouse model (SMA7-like). Cre recombination irreversibly transforms the Smn res allele to WT. We confirmed that recombination of Smn res occured exclusively in the spinal cord. Yet, unlike a previous study that used choline acetyltransferase (ChAT) as a driver on the same mice, we found no improvement in survival, weight, motor behavior or presynaptic neurofilament iii accumulation. However, like in ChAT Cre+ SMA mice, we detected rescue of endplate size and mitigation of neuromuscular junction (NMJ) denervation status. Real time-PCR showed that the expression of spinal cord SMN transcript was sharply reduced in Hb9 Cre+ SMA mice relative to ChAT Cre+ SMA mice. This suggests that our lack of overall phenotypic improvement was most likely due to an unexpectedly poor recombination efficiency driven by Hb9 Cre. Nonetheless, the low levels of SMN were sufficient to rescue two NMJ structural parameters indicating that these motor neuron cell-autonomous phenotypes are very sensitive to changes in motor neuronal-SMN levels. iv DEDICATION This dissertation is dedicated, first of all, to the Families of SMA Organization (fSMA) for their perseverance, devotion, commitment, hard work and, support to all of those afflicted by Spinal Muscular Atrophy and their families; for promoting and supporting basic and translational research to find treatments and ultimately a cure for …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spinal Muscular Atrophy: A Short Review Article

Spinal muscular atrophy (SMA) is a genetic disorder which affect nervous system and is characterized with progressive distal motor neuron weakness. The survival motor neuron (SMN) protein level reduces in patients with SMA. Two different genes code survival motor neuron protein in human genome. Skeletal and intercostal muscles denervation lead to weakness, hypotony, hyporeflexia, respiratory fa...

متن کامل

Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models.

Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS) versus peripheral tissues in mouse models ...

متن کامل

Drawing Word co-occurrence map of Spinal Muscular Atrophy disease

Introduction:  The purpose of this article is to evaluate the status of articles in the field of Spinal Muscular Atrophy According to the Scientometrics indices Word co-occurrence map of this field . Methods: The present study is an applied one with a quantitative approach and a descriptive approach. It has been done using scientometrics and the co-occurrence words analysis technique. Document...

متن کامل

Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy.

Spinal muscular atrophy (SMA) is characterized by the selective loss of spinal motor neurons owing to reduced levels of survival motor neuron (Smn) protein. In addition to its well-established role in assembling constituents of the spliceosome, diverse cellular functions have been proposed for Smn, but the reason why low levels of this widely expressed protein result in selective motor neuron p...

متن کامل

Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons?

Spinal muscular atrophy (SMA), the most common hereditary motor neuron disease in children and young adults is caused by mutations in the telomeric survival motor neuron (SMN1) gene. The human genome, in contrast to mouse, contains a second SMN gene (SMN2) which codes for a gene product which is alternatively spliced at the C-terminus, but also gives rise to low levels of full-length SMN protei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014